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Abstract. Prospects for future measurements of deeply virtual Compton scattering are studied in leading
order using different simple models for the parameterizations of generalized parton distributions (GPDs).
Measurements of the lepton charge and lepton beam helicity asymmetry will yield important input for
theoretical models towards the future extraction of GPDs. The kinematics of the HERMES experiment,
complemented with a recoil detector, was adopted to arrive at realistic projected statistical uncertainties.

1 Introduction

The study of hard exclusive processes in the Bjorken limit
is now considered as a promising tool to gain new insight
in the details of the nucleon structure that cannot be stud-
ied with inclusive deep inelastic scattering (DIS). A uni-
fied theoretical description of hard exclusive and inclusive
processes has been obtained through the formalism of gen-
eralized parton distributions [1–5] (see the recent reviews
in [7,8]) which are also called skewed, off-forward or non-
forward parton distributions.

An ordinary parton distribution represents the prob-
ability to find a parton with a specified longitudinal mo-
mentum fraction x in the fast moving hadron and thus is
summed over all partonic configurations containing such
a parton. In contrast, GPDs represent the interference of
two different wave functions, one with a parton having
momentum fraction x + ξ and another one with a parton
having momentum fraction x−ξ. GPDs, besides the longi-
tudinal momentum fraction variables x and ξ (called the
skewedness parameter), depend on a third independent
variable, the momentum transfer ∆2 = (p− p′)2 between
initial and final nucleon states with momenta p and p′,
respectively.

There are four different types of quark GPDs con-
tributing to the simplest hard exclusive process: deeply
virtual Compton scattering (DVCS), ep −→ epγ. The de-
tailed form of the Compton amplitude can be found in
[5]. The overall picture remains valid also in the case of
additional meson production in DVCS [6]. In the unpo-
larized distributions, Hq(x, ξ,∆2) and Eq(x, ξ,∆2), the
quark helicities are summed over. The polarized distribu-
tions, H̃q(x, ξ,∆2) and Ẽq(x, ξ,∆2), are responsible for
the differences between right- and left-handed quarks.

The generalized parton distributions combine the char-
acters of both the ordinary parton distributions and of nu-

cleon form factors. On the one hand, in the limit ∆2 → 0,
ξ → 0,

Hq(x, 0, 0) = q(x), H̃q(x, 0, 0) = ∆q(x), (1)

where q(x) and ∆q(x) are the ordinary quark number den-
sity and quark helicity distributions. On the other hand,
the first moment of GPDs must satisfy the following sum
rules: ∫ 1

−1
dxHq(x, ξ,∆2) = F q

1 (∆2),

∫ 1

−1
dxEq(x, ξ,∆2) = F q

2 (∆2),

∫ 1

−1
dxH̃q(x, ξ,∆2) = gq

A(∆2),

∫ 1

−1
dxẼq(x, ξ,∆2) = hq

A(∆2), (2)

where F q
1 (∆2) and F q

2 (∆2) are the Dirac and Pauli form
factors and gq

A(∆2) and hq
A(∆2) are the axial-vector and

pseudo-scalar form factors, respectively.
In the above formulae the variable x is defined in the

range (−1,+1) and negative values correspond to anti-
quark distributions in the following manner:

q(−x) = −q̄(x), ∆q(−x) = ∆q̄(x). (3)

Two different regions exist for GPDs with respect to the
variables x and ξ. For |x| > ξ the GPDs are the generaliza-
tions of the ordinary parton distributions, while for |x| < ξ
the GPDs behave like meson distribution amplitudes.

The recent strong interest in GPDs was stimulated by
the finding of Ji [2] that the second moment of the unpo-
larized GPDs at ∆2 = 0 is relevant to the spin structure
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of the nucleon since it determines the total angular mo-
mentum of the quark flavor a:

Ja =
1
2

∫ +1

−1
dxx

[
Ha(x, ξ,∆2 = 0) + Ea(x, ξ,∆2 = 0)

]
.

(4)
A determination of contributions from all quark flavors
gives the total quark angular momentum Jq which de-
composes as

Jq =
1
2
∆Σ + Lq, (5)

where ∆Σ/2 and Lq denote quark spin and orbital angu-
lar momentum, respectively. As ∆Σ is measured through
polarized DIS experiments, a measurement of Jq through
(4) in terms of GPDs provides a model-independent way
to determine the contribution of the quark orbital momen-
tum to the nucleon spin. Eventually even the contribution
of the total gluon angular momentum Jg may become ac-
cessible through

1
2

= Jq + Jg. (6)

First measurements of the DVCS lepton helicity asym-
metry have been accomplished recently by HERMES [9]
at 27.5 GeV and by CLAS [10] at 4.25 GeV. Several plans
exist for further measurements of DVCS and of other hard
exclusive reactions to reach a first insight into GPDs. The
DVCS process has also been observed in e+p collider ex-
periments at DESY by ZEUS [12] and H1 [13]. The DVCS
cross-section was measured and compared to the QCD-
based predictions. Measurements of the lepton beam he-
licity asymmetry by H1 and ZEUS will become possible
in the near future when longitudinally polarized leptons
will be made available also to the collider experiments at
HERA.

The main aim of this paper is the evaluation of the
anticipated statistical accuracy for future measurements
of DVCS asymmetries. The kinematics and acceptance of
the HERMES spectrometer, once upgraded with a recoil
detector [11] for improved separation of exclusive events,
was adopted to arrive at realistic numbers. In Sect. 2 of
this paper different versions of GPD parameterizations are
discussed. Section 3 deals with the assessment of the ex-
pected size of the asymmetries, based upon different GPD
parameterizations, and with the evaluation of their pro-
jected statistical accuracy. Finally, in Sect. 4 the conclu-
sions of this paper are presented.

2 Parameterization
of generalized parton distributions

Two examples of GPD calculations are presently known
in the literature. While bag model calculations [14] show
a weak dependence of the distributions on the skewedness
parameter, chiral quark soliton model calculations [15,16],
in contrast, show a strong dependence on ξ. The common
approach at the moment is to use a guess that satisfies
general constraints on GPDs known from theory. This pa-
per basically follows the ansatz proposed in [17,8]. Here,

the dependence of the GPDs on ∆2 is taken in a factorized
form with respect to the other variables whereby satisfying
(2). Any scale dependence of the GPDs is neglected.

In the simplest approach GPDs can be assumed to be
independent of the skewedness parameter ξ. In the fol-
lowing, only u- and d-quark GPDs are considered to be
non-zero. The function H, for example, is written as a
product of an ordinary quark distribution function and a
form factor,

Hu(x, ξ,∆2) = u(x)Fu
1 (∆2)/2,

Hd(x, ξ,∆2) = d(x)F d
1 (∆2). (7)

Here u(x) and d(x) are the unpolarized quark distribu-
tions and F

u(d)
1 (∆2) are defined through the electro-

magnetic form factors of proton and neutron:

Fu
1 = 2F p

1 + Fn
1 , F d

1 = F p
1 + 2Fn

1 . (8)

In the same context, the function H̃ is written in rela-
tion to quark helicity distributions and axial-vector form
factors:

H̃u(x, ξ,∆2) = ∆uV (x)gu
A(∆2)/gu

A(0),

H̃d(x, ξ,∆2) = ∆dV (x)gd
A(∆2)/gd

A(0), (9)

where gu
A = (1/2)gA + (1/2)g0

A, gd
A = −(1/2)gA + (1/2)g0

A
and g0

A = (3/5)gA.
The functions E and Ẽ have no definite limit at ∆2 →

0, ξ → 0, as it exists for the functions H and H̃ (cf. (1)).
In absence of any other guide the ansatz for E is chosen
in a form analogous to the function H:

Eu(x, ξ,∆2) = u(x)Fu
2 (∆2)/2,

Ed(x, ξ,∆2) = d(x)F d
2 (∆2), (10)

where F
u(d)
2 is defined in the same way as F

u(d)
1 in (8).

The function Ẽ is modeled to be due to the pion pole
[16]:

Ẽu(x, ξ,∆2) = −Ẽd(x, ξ,∆2)

=
1
2
Ẽπ pole(x, ξ,∆2), (11)

Ẽπ pole(x, ξ,∆2) = θ (−ξ ≤ x ≤ ξ)hA(∆2)
1
ξ
Φ

(
x

ξ

)
, (12)

where Φ(z) = 3/4(1 − z2) is the pion distribution am-
plitude, hA(∆2) = (4M2gA)/(m2

π −∆2), and θ(x) is the
usual step function.

To introduce, as a next step, a dependence of the GPDs
on the skewedness parameter ξ, the double-distribution
formalism [1,3] can be used. In this model, the ∆2-
independent part of the function H can be written in the
following form:

Hq
DD(x, ξ) =

∫ 1

−1
dy

∫ 1−|y|

−1+|y|
dtδ(x− y − tξ)h(y, t)q(y).

(13)
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Here q(y) is the ordinary quark distribution and h(y, t) is
the so-called profile function:

h(y, t) =
Γ (2b + 2)

22b+1Γ 2(b + 1)
[(1− |y|)2 − t2]b

(1− |y|)2b+1 , (14)

with b a free parameter and b → ∞ corresponding to
the skewedness-independent parameterization. Analogous
expressions can be written for the functions H̃ and E.

The functions H and E in the form of double distribu-
tions lack the correct polynomiality properties of GPDs.
However, they can be restored by introducing the so-called
D-term [18]. The D-term contribution has a different sign
for H and E and hence is canceled in Ji’s angular mo-
mentum relation, (4). The full model expressions for the
GPDs therefore have the following form:

Hq(x, ξ) = Hq
DD(x, ξ) + θ(ξ − |x|) 1

Nf
D

(
x

ξ

)
,

Eq(x, ξ) = Eq
DD(x, ξ) − θ(ξ − |x|) 1

Nf
D

(
x

ξ

)
, (15)

where Nf = 3 is the number of active flavors. The param-
eterization of the D-term is taken in a form that follows
from chiral quark soliton model calculations [19]. For more
details on possible GPD parameterizations and their dis-
cussion we refer to [17,8].

Quark number density and quark helicity distributions
q(x) and ∆q(x), respectively, were used in the parame-
terizations of [20] (at Q2 = 2 GeV2) and [21] (at Q2 =
1 GeV2).

In the projections described below five different ver-
sions of GPD parameterizations were included:

(A) H(x, ξ), H̃(x, ξ), and E(x, ξ) are skewedness indepen-
dent and given by (7), (9), and (10), respectively.

(B) The skewedness dependence of H(x, ξ), H̃(x, ξ), and
E(x, ξ) is generated through the double-distribution
formalism (13) and (14) with the parameter b = 1.

(C) Same as (B), but with the parameter b = 3.
(D) Same as (B), but the contribution of the D-term to

H(x, ξ) and E(x, ξ) is included additionally, accord-
ing to (15).

(E) Same as (D), but with the parameter b = 3.

For Ẽ(x, ξ) the pion pole expression (11) is used for all
versions of GPDs.

The dependences of the GPDs on the variables x and ξ
(at ∆2 = 0), obtained from these five different parameter-
izations, are displayed for a few examples in Fig. 1. Panels
(a) and (b) show the GPD H in version (B) for different
values of ξ, compared between u- and d-quark. Panels (c)
and (d) show the unpolarized u-quark GPDs H and E at
fixed ξ = 0.4, compared between different versions: (B)
as a solid line, (C) as a dashed line and (D) as a dotted
line. Panels (e) and (f) show the polarized u-quark GPDs
H̃ and Ẽ in version (B) compared for different values of
ξ. Although Ẽ does not appear in the DVCS asymmetries
(see below), its u- versus d-quark comparison is shown as
well. By definition Ẽ is large at ∆2 = 0 (see (11)).
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Fig. 1a–f. Illustration of the x-behavior of various general-
ized parton distributions for different values of the skewedness
parameter ξ (at ∆2 = 0). For explanation see text

x+ξ

p p'

x-ξ

γ*(q) γ(q')

Fig. 2. Leading handbag diagram for DVCS

3 Deeply virtual Compton scattering

In the Bjorken limit, DVCS is dominated by the handbag
diagram (Fig. 2) and its amplitude can be factorized into a
soft part described by GPDs and a hard part representing
a parton process calculable in perturbative QCD. In this
limit the skewedness parameter ξ can be related to the
Bjorken variable xB:

ξ =
xB/2

1− xB/2
. (16)

The same final state, epγ, can also be produced via the
Bethe–Heitler (BH) process in which an electron scatters
elastically off the target proton and the initial or final
state electron radiates a real photon. The cross-section
of this process can be calculated exactly once the Dirac
and Pauli nucleon form factors are known. On the one
hand, the BH process constitutes the main background
to DVCS, on the other hand their interference opens the
unique opportunity for independent measurements of the
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Fig. 3. Kinematic configuration for the process ep −→ epγ

real and imaginary parts of a certain DVCS amplitude
combination (see below).

The cross-section of the DVCS process and its interfer-
ence with the BH process has been considered in a number
of papers [2,3]. The kinematic configuration of the process
ep −→ epγ is shown in Fig. 3. Here φγ describes the az-
imuthal orientation of the production plane (comprising
γ∗, γ and p) relative to the scattering plane (comprising
the initial and final lepton, as well as the virtual photon).
The laboratory polar angle between virtual and real pho-
ton is denoted by θγγ∗ . In-plane (i.e. φγ = 0) differential
cross-sections for DVCS, BH and total γ production in
e+p interactions at Ee = 27.5 GeV were calculated follow-
ing [2] and are presented in Fig. 4. The DVCS cross-section
shows a maximum at Θγγ∗ = 0, while the BH cross-sec-
tion has a three-pole structure due to the propagators of
the virtual electrons and the virtual photon. Although at
this energy the cross-section of DVCS is smaller than that
of BH over practically the entire kinematic region, the in-
terference between both processes opens the possibility to
access DVCS amplitudes [22,23].

In [24] amplitudes of DVCS, BH and of the interference
terms were calculated at the leading twist-2 level for polar-
ized and unpolarized initial particles. This approach was
used to calculate projections for future measurements of
DVCS–BH interference effects. For a first application the
kinematics and acceptance of the HERMES experiment
were chosen. In the context of the planned recoil detec-
tor upgrade the primary interest lies with measurements
using an unpolarized proton target. In this case two differ-
ent types of experiments are possible that will be giving
insight into GPDs:
(I) Measurements of the lepton charge asymmetry with
unpolarized leptons of either charge:

d∆σch ≡ dσ(e+p)− dσ(e−p) ∼ cos(φγ) (17)

× Re
{
F1H1 +

xB

2− xB
(F1 + F2)H̃1 − ∆2

4M2F2E1
}

.

This asymmetry allows one to have access to the real parts
of the DVCS amplitudes H1, H̃1, and E1.
(II) Measurements of the beam helicity asymmetry using
a polarized positron beam:

d∆σLU ≡ dσ(
−→
e+p)− dσ(

←−
e+p) ∼ sin(φγ) (18)

× Im
{
F1H1 +

xB

2− xB
(F1 + F2)H̃1 − ∆2

4M2F2E1
}

.
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Fig. 4. Illustration of the behavior of the differential in-plane
cross-section as a function of the polar angle between the vir-
tual and the real photon for DVCS (dashed lines), Bethe–
Heitler (dotted lines) and total γ production (solid lines) in
e+p interactions at HERMES energy Ee = 27.5GeV. Different
panels are for different values of xB and Q2

This asymmetry allows one to have access to the imagi-
nary parts of the same amplitudes.

The imaginary and real parts of the DVCS amplitudes
H1 and H̃1 are related to the GPDs H and H̃ as follows:

ImH1 = −π
∑

q

e2
q(Hq(ξ, ξ,∆2)−Hq(−ξ, ξ,∆2)),

ImH̃1 = −π
∑

q

e2
q(H̃q(ξ, ξ,∆2) + H̃q(−ξ, ξ,∆2)),

ReH1

=
∑

q

e2
q

[
P

∫ +1

−1
Hq(x, ξ,∆2)

(
1

x− ξ
+

1
x + ξ

)
dx

]
,

ReH̃1 (19)

=
∑

q

e2
q

[
P

∫ +1

−1
H̃q(x, ξ,∆2)

(
1

x− ξ
− 1

x + ξ

)
dx

]
,

where P denotes Cauchy’s principal value. The DVCS am-
plitudes E1 and Ẽ1 can be expressed through E and Ẽ
analogously.

Projections for statistical accuracies attainable in mea-
surements of the lepton charge and lepton beam helic-
ity asymmetry were calculated in the HERMES kinemat-
ics for an anticipated integrated luminosity of 2 fb−1 [11]
which corresponds to the expected value for one year of
data taking. The HERMES geometrical acceptance for the
detection of the scattered electron, the photon and the
recoil proton was taken into account. The following kine-
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matic cuts1 were applied: Ee > 3.5 GeV, W 2 > 4 GeV2,
Q2 > 1 GeV2, Eγ > 1 GeV, Pp > 0.2 GeV, 0.35 < θlab

p <
1.35 rad, and 15 < Θγγ∗ < 70 mrad. Note that the last cut
corresponds to a narrow region in the center of the plots
shown in Fig. 4.

To calculate the asymmetries (17) and (18) the 5-fold
differential cross-section has to be integrated over the ap-
propriate kinematic region accounting for the geometrical
acceptance:

dσ
dφγ

=
∫

d5σ

dxBdQ2d|∆2|dφγdφel
dxBdQ2d|∆2|dφγdφel,

where φel is the azimuthal angle of the scattered electron.
It is appropriate to define differences and sums of certain
cross-sections:

d∆σch

dφγ
=

dσ(e+p)
dφγ

− dσ(e−p)
dφγ

,

dΣσch

dφγ
=

dσ(e+p)
dφγ

+
dσ(e−p)

dφγ
,

d∆σLU

dφγ
=

dσ(e↑p)
dφγ

− dσ(e↓p)
dφγ

,

dΣσLU

dφγ
=

dσ(e↑p)
dφγ

+
dσ(e↓p)

dφγ
. (20)

Using these definitions the φ-dependence of the lepton
charge asymmetry reads

Ach(φ) =

∫ φ+∆φ

φ−∆φ
dφd∆σch/dφ∫ φ+∆φ

φ−∆φ
dφdΣσch/dφ

, (21)

while an integrated lepton charge asymmetry can be de-
fined by forming the difference between two integrals over
appropriately defined “halves” of the φ-distribution:

Ãch =

∫ π/2
−π/2 dφd∆σch/dφ− ∫ 3π/2

π/2 dφd∆σch/dφ∫ 2π

0 dφdΣσch/dφ
. (22)

Analogously the φ-dependent and the integrated lepton
beam helicity asymmetry, respectively, are defined as fol-
lows:

ALU (φ) =

∫ φ+∆φ

φ−∆φ
dφd∆σLU/dφ∫ φ+∆φ

φ−∆φ
dφdΣσLU/dφ

, (23)

ÃLU =

∫ π

0 dφd∆σLU/dφ− ∫ 2π

π
dφd∆σLU/dφ∫ 2π

0 dφdΣσLU/dφ
. (24)

Projections for the statistical accuracy attainable in
measuring the lepton charge asymmetry are presented in

1 Here Ee and Eγ are the energy of the incoming electron and
the outgoing photon, respectively, while Pp is the momentum
of the outgoing proton. The standard DIS variables Q2 and W
describe the negative four-momentum transfer squared and the
energy of the γ∗p system, respectively. The laboratory polar
angle of the outgoing proton is given by θlab

p
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Fig. 5. Projected statistical accuracy for the lepton charge
asymmetry (21) as a function of the azimuthal angle φγ be-
tween scattering plane and production plane. Predictions of
different GPDs models (see text) are shown in two regions of
xB. Version (A) is denoted by a dash-dotted line; version (B)
by a long-space dotted line; version (C) by a long-space dashed
line; version (D) by a dotted line; version (E) by a dashed line

Fig. 5. The results are shown as a function of the azimuthal
angle φγ in two regions of xB, using different GPD pa-
rameterizations. The asymmetry clearly depends on the
particular parameterization and can even change its sign
in dependence on xB . Therefore, in the experiment the
asymmetry will have to be studied differentially as much
as possible. Apparently, the inclusion of the D-term leads
to essential changes in the asymmetry and future mea-
surements may allow one to confirm its importance ex-
perimentally. In Fig. 6 the integrated lepton charge asym-
metry Ãch is shown as a function of xB and ∆2, based on
the GPD parameterization (E). No ∆2-dependence is seen
on the basis of the chosen GPD model.

Projections for the statistical accuracy attainable in
measurements of the helicity asymmetry are presented in
Fig. 7, as a function of the azimuthal angle φγ (top panel)
and as a function of xB and ∆2 (bottom panel). As can be
seen, the projections of the statistical accuracy promise a
considerable improvement compared to the present HER-
MES measurement [9] shown additionally in Fig. 7 (top
panel). The projected asymmetry changes only slightly in
dependence on the GPD parameterizations when the pa-
rameter b of the profile function (14) varies in the range
(1,∞). Note that the beam helicity asymmetry is not sen-
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upon GPD model version (E)

sitive to the D-term as it does not contribute to the imag-
inary parts of DVCS amplitudes.

The considerations presented above are based upon the
leading twist-2 level using the amplitudes calculated in
[24]. More elaborate approaches may include twist-3 ef-
fects [19,25] and next-to-leading order calculations [26,
27]. These calculations show that the corrections to lead-
ing order can be quite large. Nevertheless, in the present
situation, where the generalized parton distributions are
practically unknown, the approach adopted in this paper
appears adequate to evaluate the size of the asymmetries
expected in future measurements.

It appears worth noting that important results on
GPDs can be expected from the analysis of the same data
set by studying hard exclusive production of both pseudo-
scalar and vector mesons. As compared to DVCS these
processes will provide information on different combina-
tions of generalized parton distributions.

4 Conclusions

Expected statistical accuracies have been evaluated for fu-
ture measurements of deeply virtual Compton scattering.
Kinematics and acceptance of the HERMES spectrometer,
complemented with a recoil detector, have been adopted
for the calculations presented in this paper. Using polar-
ized electrons and positrons of HERA with different helic-
ities, in conjunction with an unpolarized proton target, it
becomes possible to measure the lepton charge asymmetry
and the lepton beam helicity asymmetry, both induced by
the interference of the DVCS and the Bethe–Heitler pro-
cess. From these asymmetries the real and the imaginary
part of a certain DVCS amplitude combination can be
determined.

The expected size of the asymmetries has been eval-
uated using various parameterizations of the underlying
generalized parton distributions. A number of different pa-
rameterizations has been used to compensate as much as
possible for the present poor knowledge on GPDs. The
level of the attainable statistical accuracy is mainly deter-
mined by the cross-section of the Bethe–Heitler process
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Fig. 7. Projected statistical accuracy for the beam helicity
asymmetry (23) and (24) as a function of the azimuthal angle
φγ between scattering plane and production plane (top panel,
closed circles) and as a function of xB and ∆2 (bottom panel).
The line conventions are as in Fig. 5. The present measurement
of the azimuthal asymmetry by HERMES [9] is shown in the
top panel by open circles

that dominates the reaction ep → epγ at the given en-
ergy.

It has been shown that measurements of hard exclusive
real photon production at HERMES will be of high sta-
tistical significance. The envisaged separate results on the
real and the imaginary part of a certain DVCS amplitude
combination will constitute an important step towards the
determination of the generalized parton distributions. The
measured constraints will serve as very useful input for the
further modeling of generalized parton distributions. Nev-
ertheless, for a successful extraction of GPDs from exper-
imental observables further theoretical work is required.
An actual list of problems that need further investigation
has recently been given in [8].
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